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Summary. The recently proposed valence bond (VB) corrected single reference 
(SR) coupled cluster method with singly and doubly excited cluster components 
(CCSD) [Paldus and Planelles, Theor Chim Acta 89, 13-31 (1994)] is tested using 
a number of simple yet typical Par iser-Parr-Pople  (PPP) 7t-electron model sys- 
tems, including both cyclic and linear polyenes. The cluster analysis of various 
approximate VB wave functions, obtained with the PPP-VB approach [Li and 
Paldus, J Mol Struct (Theochem) 229, 249 (1991)], is carried out and the resulting 
three- and four-body connected cluster components are employed in the VB 
corrected CCSD method. The cluster structure and the correlation energies ob- 
tained are compared to full configuration interaction (FCI) or full VB (FVB) 
results, representing the exact solutions for these models, and the performance and 
potential of the CCSD-VB approach are discussed. 

Key words: Coupled cluster method - Valence bond (VB) wave functions - VB 
corrected CCSD method - Cluster analysis - Correlation effects - PPP Hamiltonian 

1 Introduction 

Single reference (SR) coupled cluster (CC) approaches, truncated at the pair-cluster 
level (CCSD) [1, 2], represent an often employed size-extensive formalism provid- 
ing a reliable description of correlation effects in nondegenerate ground states of 
small and medium size molecular systems (see, e.g., [2a, 3]). These desirable 
properties of the CCSD method result from the negligibility of connected 3- and 
4-body clusters that generally characterize nondegenerate situations. However, 
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once the reference configuration becomes quasidegenerate with one or more 
excited configurations (as invariably is the case for nonequilibrium nuclear confor- 
mations that one must consider when dissociating or forming one or more chem- 
ical bonds, or when exploring an entire potential energy surface), the negligibility of 
higher than 2-body connected cluster components no longer holds. In such cases, 
the CCSD description steadily deteriorates with increasing quasidegeneracy and 
may even break down completely (in the sense that no real energy solution exists). 
Such situations are well documented in the literature [2, 4-6]. For very accurate 
calculations, 3-body clusters should be accounted for even when no quasidegener- 
acy is present (cf. [3]). 

At the same time, it is well known that the energy is completely determined by 
one- and two-body cluster components, as long as the Hamiltonian considered 
involves at most two-body interactions. Nonetheless, the chain of CC (or, similarly, 
CI) equations is completely coupled in the sense that the equations determining the 
/-body clusters are coupled with those involving (i-2), (i-1),  (i + 1) and (i + 2)- 
body clusters. Consequently, we require the 3- and 4-body clusters to be negligible 
in order to truncate the chain of CC equations at the pair-cluster level, since the 
coupling terms involving these clusters may then be safely neglected. Were we able 
to obtain a reasonable estimate of these 3- and 4-body clusters from some 
independent source, however, the same truncation could be achieved even in 
quasidegenerate cases. This is precisely the idea behind the VB corrected 
CCSD approach, in which we employ an approximate VB wave function 
to determine the 3- and 4-body connected cluster components, that are then 
used to decoupte the CC chain of equations. We outlined this approach in greater 
detail in Part I of this series [7] and will refer to it in the following as the CCSD-VB 
method. 

More precisely, employing the standard SR CC Ansatz for the exact wave 
function 

N 

[~ )=exp(T) ]~o) ,  T = ~ T i ,  (1) 
i = 1  

the mono- and bi-excited subsets of the CC chain of equations take the form 
[1, 2, 7] 

<w~ IHN(a÷Ta+T2+½T2÷2TxT2+~T~)I~o>c+< J~ IH~r~l~o>=0,  (2a) 

((O(s2)IHN(I+T~+T2+½Tf±±T2+2T~T2T2 2 +~Tt~ 2T2+~T~+~T424 [~o)c 

+ ( ~b(j2) I HN( T3 + T4 + T1T3) [ ~o )c=O, (2b) 

where the subscript C implies that only connected terms contribute and HN 
designates the normal product form (with respect to I~o)) of the electronic 
Hamiltonian (see, e.g. [1, 2b]): 

HN=H-<~o I HI ~o> = FN+ V~, (3a) 

FN=2 ( i[ f l j )  E n[X~Xj~], (3b) 
i , j  a 

VN=½ ~ (ij[~lkl) ~ + + n[Xi~Xj~Xl~Xk~], (3C) 
i , j , k , l  a, ,:  
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with 

( i [ f [ j )=( i [2[ j )+  ~ (2(ia]~[ja)--(ial~[aj)). (3d) 
a 

(occupied) 

Here we designate the annihilation (creation) operator of the second quantization 
formalism that is associated with the spinorbital ] i ) [ a ) - ] I )  as Xi~(Xti~), while 
using Dirac notation for two-electron integrals (ijl~[ kl) = (i(1)j(2)I~l k(1)/(2)). 
Finally, I ~ ,  )) designates the n-times excited configuration [defined by the appro- 
priate set of occupied and virtual (spin) orbital labels and, in the spin-adapted 
formalism, also by appropriate intermediate spin coupling quantum numbers] 
relative to the reference [~bo). 

Thus, neglecting the T3 and T4 components, i.e., by setting T3 = T4=0, we 
obtain the well known CCSD equations (or their variants resulting by neglecting 
small higher order contributions, such as those represented by cubic and quartic 
terms) that we can write in the general form 

al + bijtj+ Cijktjtk + . . . .  0 ,  (4) 

where the summation convention over repeated indices is implied and where we 
assume some arbitrary but fixed labeling of mono- and bi-excited configurations. 
Assuming now that we can find some independent estimate of the T3 and T~ cluster 
components, we can evaluate the corresponding terms involving these clusters [the 
second term on the left-hand side of Eqs. (2)], and correct accordingly the absolute 
and linear terms in Eq. (4), thus obtaining the corrected CCSD equations 

a'i -}- b~jt i + Cljktjtk "-k . . . .  0.  (5) 

Employing a VB wave function as the source of 3- and 4-body components, we thus 
arrive at the CCSD-VB method. The explicit form of the required corrections was 
given in Part I. We recall that for simplicity sake, we also employ approximate 
1-body components of T1 in order to correct for the presence of TIT3 clusters 
through absolute rather than linear terms. For details, we refer the reader to 
Part I. 

Prior to working out various technical problems and generating appropriate 
codes at the ab initio level, we consider it worthwhile to test this idea on simple 
semiempirical model systems, in particular those described by the 
Pariser-Parr-Pople (PPP)-type Hamiltonians [8, 9]. This choice has several ad- 
vantages that we list below. 

(a) PPP n-electron models enable us to explore the broad regime of correlation 
effects by simply changing the appropriate coupling constant, which may be 
conveniently chosen as the reciprocal value of the resonance integral ft. Thus, 
scaling the resonance integral fl for a given system, while keeping the two-electron 
Coulomb integrals fixed, we can examine the correlation effects from the fully 
correlated limit (fl = 0) to a completely noncorrelated limit (in practice, fl ~ - 5 eV), 
in which the Hiickel approximation becomes exact and the correlation energy 
tends to zero. 

(b) For sufficiently small model systems we can easily obtain the exact solution 
using either the full configuration interaction (FCI) [10] or full valence bond (FVB) 
[11, 12] codes. This will in turn enable us to make a direct comparison of 
approximate and exact cluster amplitudes and to explore separately the role of 
various correction terms involving T3, T4 and T1 T3 clusters. 
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(c) The easy accessibility of exact solutions also facilitates testing our codes, 
since by employing exact 3- and 4-body cluster amplitudes we must obtain exact 
FCI energies when solving the CCSD-VB equations. 

(d) Finally, we can also exploit these models to simulate bond breaking or 
formation when we use "Mulliken's magic formula" [13, 14] for the resonance 
integrals and proceed beyond the tight binding approximation at the one-electron 
level. Such models will be employed in Part III of this series [15]. 

In the next section we briefly characterize the models and methods employed, 
while in Sects. 3 and 4 we present results for cyclic and linear polyenic systems, 
respectively. In the last section we discuss these results and draw appropriate 
conclusions. 

2 Models and method employed 

We consider various homonuclear 7r-electron model systems as described by the 
PPP Hamiltonian of the form [9] 

H~= fl ~' Eu. + ½ ~ 7,~(n,-1)(n~-i). (6) 
~,V R,V 

where 

E~ = ~ X*u~X~ (7) 

are the atomic orbital unitary group, generators [9] and n u =E~, u is the/tth site 
occupation number operator. The one-electron resonance integral fl, fi = < # 121 v > 
with/~ and v being nearest neighbors, can be employed as a coupling constant (or, 
rather, its reciprocal value f i - ' )  which measures the magnitude of correlation 
effects. It is thus instructive, at least for certain archtypal systems, to explore the 
whole range of correlation effects (by scaling the resonance integral fl) from 
a weakly correlated regime ( f l ~ - 5  to - 1 0  eV), where correlation effects are 
negligible, to the fully correlated limit (fl=0), where the correlation effects pre- 
dominate and where many standard approaches to the correlation problem break 
down. The two-electron part of the PPP Hamiltonian contains only Coulomb-type 
integrals 7~ = e Z ( p v l r l ~  [I ~v ) thanks to the zero differential overlap (ZDO) ap- 
proximation employed [8]. The one-center integral 700 is given by the difference 
between the valence state ionization potential and electron affinity of the sp 2 
hybridized carbon atom [8]. We shall employ the value of 70o = 10.840 eV. For the 
2-center Coulomb integrals we then use the Mataga-Nishimoto approximation 
[163 

7 u ~ = e 2 / ( R u , + a ) ,  a = e Z / 7 o o  . (8) 

Finally, the prime on the first summation symbol in Eq. (6) indicates that we 
employ the tight binding approximation for the one-electron part, so that the sum 
extends over nearest neighbors only. 

In order to obtain meaningful VB wave functions, involving only a few covalent 
structures, it is essential to employ the so-called overlap enhanced atomic orbitals 
(OEAOs) [17, 18]. In contrast to the orthonormal AO's )~ of the PPP model, 
<)G I Z~ > = b,~, each localized on the atomic site #, the OEAOs are nonorthogonal, 
suitably delocalized atomic orbitals that provide an optimal bonding within the 
VB scheme considered. Ideally one assumes the LCAO form for the OEAOs (as in 
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the MO calculations) without, however, enforcing the orthogonality, and uses the 
variation principle to determine the optimal values of these LCAO coefficients 
once the desirable form of the VB wave function is chosen [say, all covalent 
structures or some appropriate subset of the latter, e.g., all Kekul~ type structures, 
etc.]. We have shown earlier [11, 19, 20] that for the PPP models it is sufficient to 
consider at most two variational parameters. In the simplest one-parameter case, 
the unnormalized OEAOs have the form 

v 
(v=##) 

with the summation extending over nearest neighbors of/~, and Z~ designating an 
orthonormal PPP AO on site ~. In general, multi-parameter OEAOs can be chosen 
with, say, one-parameter (el) associated with nearest neighbors, a second para- 
meter (~2) with next nearest neighbors, etc. For honeycomb lattices of aromatic 
systems it also makes sense to choose e3 as the second parameter, i.e., to set ~2 = 0 
(for meta positions), namely to admix to a given Zu only its nearest and second next 
neighboring Z~'s (i.e., from ortho and para positions). Thus, when we shall employ 
2-parameter OEAOs in the benzene case, they will be parametrized precisely in this 
way (i.e., {bl, 3} basis of [ll]).  

The computational algorithm that was developed for the PPP-VB method 
exploits the formalism of the Clifford algebra unitary group approach (CAUGA) 
[21, 22] and was described in detail elsewhere [12]. Briefly, the spin-free 
Rumer-Weyl VB basis vectors [21d] are labeled by bonded tableaux [23] and are 
expressed in terms of bi-spinor CAUGA states. The latter can be put into a one to 
one correspondence with the Waller-Hartree bi-determinantal states [24]. Note 
that the action of U(N) generators, E.~, Eq. (7), which are defined in terms of 
orthogonal PPP AO's X,, on the nonorthogonal OEAO basis { q~. } is very simple. 
Writing, generally, 

4.  = ~ ~.)~v, (10) 
v 

we have that 

EuvqS~ =ewZ~. (11) 

Thus, acting with the PPP Hamiltonian (6) on our VB states and calculating the 
overlap with the resulting states, we obtain a standard variational eigenvalue 
problem of the non-orthogonal type 

HC=ESC, (12) 

which is handled in a standard way (depending on the size of the problem). 
The available PPP-VB programs [11, 12] are capable of exploiting an arbitrary 

set of covalent and/or ionic VB structures, including the full VB (FVB). Clearly, the 
latter is identical with the corresponding FCI, in which case we can directly exploit 
the orthogonal PPP basis, avoiding nonorthogonality problems. It is also clear 
that OEAO basis is undefined in the FVB case, since any basis set will yield the 
same resulting FCI energy. We may thus expect that it may become difficult to 
determine the OEAO basis when very large VB expansion (close to FVB) would be 
employed. However, the whole idea of VB approaches is to employ only a few 
structures in the VB expansion, in which case the search for the optimal OEAOs 
creates no problems. 
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For all the systems considered in this paper we employ approximate VB wave 
functions involving only covalent-type structures: we either employ all Kekul6 type 
structures or all covalent structures. As already mentioned, our PPP-VB studies 
[11, 12, 19, 20] of various n-electron systems (both alternant and nonalternant; 
aromatic, nonaromatic and antiaromatic; neutral, ionic, radicaloid or biradicaloid 
species), revealed that a one-parameter description provides very satisfactory 
results. Moreover, when employing the standard spectroscopic parameterization 
(/~ ~-2 .4  eV), the value of the mixing parameter ~1, Eq. (9), changes very little from 
one system to another, so that when using its average value el, re)= 0.31, only very 
small changes in the calculated n-electron energies result [-11, 12, 19, 20]. Thus, for 
all practical purposes, the simplest PPP-VB method exploiting the nearest neigh- 
bor OEAO basis with fixed mixing parameter el = e~l ave) = 0.31 and only covalent (or 
even only Kekul6) structures, provides a very good description of the studied 
models I l l ,  12, 19, 20]. 

Nonetheless, when we wish to explore the whole range of the coupling constant, 
we cannot avoid the optimization step determining the mixing parameter(s) el (or 
e~ and e3), since they change rapidly with/~. Thus, as long as we carry out studies 
for different correlation regimes by varying the resonance integral//, we always 
optimize mixing parameter(s). 

Once a suitable PPP-VB wave function is determined, we then carry out 
a standard cluster analysis and from the resulting 3- and 4-body (and 1-body in 
case of T1 T3 correction) cluster amplitudes, expressed relative to the standard SCF 
MO (or HF) basis, we calculate corrections to the absolute terms of the CCSD 
equations. Having these corrections, we finally carry out the standard CCSD 
calculations. All these steps were described in considerable detail in Part I, where 
we also presented an explicit form of all the required correction terms. 

The choice of our model systems that are considered below was guided by the 
following considerations. We first start with regular cyclic polyenes, which were 
carefully studied earlier using various methods (see, e.g., [-5, 6, 14]). In view of the 
high spatial symmetry of these models, the standard Hiickel MOs are simulta- 
neously the HF or SCF MOs as well as Brueckner (or maximum overlap) MOs. 
Consequently, the T~ cluster component exactly vanishes in this case. Moreover, 
when considering the 4-membered ring, representing the PPP model of cyc- 
lobutadiene, even the T3 clusters vanish in view of the particle-hole symmetry. 
Thus, in this simplest case, only one T4 cluster component is involved, so that 
a detailed study can be accomplished. We thus start our investigations with this 
simplest system, followed by two aromatic-type cyclic polyenes (with non-degener- 
ate ground state), namely C6H 6 and CxoHao, the first one representing the PPP 
model of benzene. Thus, both archtypal antiaromatic (C4H4) and aromatic (C6H 6) 
systems are included. We then explore linear polyenes as representatives of nonaro- 
matic systems, namely trans-butadiene and all-trans-hexatriene, where all cluster 
components (T1, T3 and T,) have nonvanishing components. 

3 Results and discussion 

In order to present succinctly our results, we introduce a shorthand notation that 
describes the CCSD-VB method employed. We designate the number of Kekul6 
(K) or covalent (c) structures and the number of mixing parameters (e) involved in 
the VB wave function, providing the cluster components which were used to 
evaluate the correcting terms (T1, T3 and/or T1T3), as follows: CCSD-VB(nK, me) 
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Table l. Comparison of the exact (FCI) and approximate [PPP-VB(2K, 1E)] t4-amplitudes 
for the ~-electron model of cyclobutadiene as a function of the resonance integral fl (in eV). 
R designates the ratio of VB and FCI amplitudes, _ PPg-vB FC~ R - t ,  /t4 . Optimal values of the 
mixing parameter ~1, Eq. (9), characterizing the OEAO {bl } basis employed in the VB 
model, are also given 

--/~ (eV) ~1 t 4 R 

VB (2K, is) FCI 

0.25 0.0443 -0.46721 -0.46954 0.99505 
0.5 0.0847 -0.33624 -0.34096 0.98615 
1.0 0.1490 -0.19499 -0.20068 0.97162 
1.5 0.1947 -0.12872 -0.13249 0.97160 
2.0 0.2289 -0.09218 -0.09432 0.97733 
2.5 0.2553 -0.06996 -0.07069 0.98977 
3.0 0.2774 -0.05463 -0.05499 0.99341 
3.5 0.2948 -0.04444 -0.04401 1.00978 
4.0 0.3102 -0.03657 -0.03603 1.01488 
5.0 0.3345 -0.02624 -0.02543 1.03187 

10.0 0,4001 -0.00821 -0.00784 1.04628 

implies that n Kekul6 structure wave function built from m-parameter OEAOs was 
employed, and similarly CCSD-VB(nc, me) indicates that also non-Kekul6 
covalent structures were employed. When only certain correcting terms are con- 
sidered, this is indicated by corresponding abbreviat ions/ '3 ,  T4 and T~ T3. 

3.1 Cyclic polyenes 

3.1.1 Cyclobutadiene. Considering the P P P  model of C4H4,  we  assume the C - C  
bond length to be 1.4 A with carbon nuclei forming a regular square. We also 
employ the tight binding approximation for the one-electron part  (see Part  I I I  
[15] for models going beyond this approximation). As already mentioned, both T1 
and T3 clusters vanish, while T4 involves a single cluster component  
t4 = (33441 ~411122). Thus, in this case CCD = CCSD = CCSDT. 

Considering a VB wave function involving two Kekul6 structures (which in this 
simple case is equivalent to an all covalent structure wave function), we optimized 
mixing parameter  e~ to minimize the energy and subsequently cluster analyzed the 
resulting wave function. The results are summarized in Table 1, where the t4 cluster 
component  arising from the two Kekul~ structure VB wave function is compared 
with the exact result obtained by cluster analyzing the FCI  wave function. We find 
that in the whole region of/~ values, the t4 component  resulting from the approxi- 
mate VB wave function (2 Kekul6 structures) provides an excellent approximation.  
Since each Kekul~ structure wave function represents an exact solution in the fully 
correlated f l = 0  limit [as the form of the P P P  Hamil tonian given by Eq. (6) 
immediately implies], the best approximation is obtained for small [/~[ values, and 
it deteriorates as I/~1 increases until/~ = - 1 . 5  eV. It  then starts again improving until 
/ /~ - -3 .5  eV when it again starts deteriorating with further increase in I/~1 (see 
Table 1). However, even for very large [ill values ( / ~ = -  10 eV), the error in t4 does 
not exceed 5%. Since, at the same time, the magnitude of the t4 amplitude decreases 
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Fig. 1. Relative correlation 
energies E(appr°x) / E CF°) obtained 
with the PPP-VB(2K, le) 
approximation (O) and with the 
standard (~) and VB corrected 
(~) CCSD approaches as 
a function of the resonance integral 
fl (in eV) for the ~t-electron model 
of cyclobutadiene. Note that 
within the scale of the figure, the 
PPP-VB(2K, le) and CCD-VB 
energies coincide, both being 
almost identical with the FCI 
energy (cf. also Table 1) 

with increasing ]ill, and correspondingly its effect on the correlation energy (in fact 
the correlation energy itself approaches 0 as [fl[ ~ m), this inaccuracy in t4 should 
have little effect. Let us also mention that even the pair clusters resulting from the 
2 Kekul6 VB wave function are very close to the exact pair cluster amplitudes in the 
whole range of the coupling constant examined (0 ~<1¢/I ~< 10 eV). 

As might be expected, we obtain very good correlation energies when employ- 
ing the VB corrected CCSD procedure. Indeed, while the standard CCD steadily 
deteriorates when approaching the fully correlated limit (and in fact breaks down 
completely for very small Ifl[ values), the CCD-VB (2K, le) provides a practically 
exact result for all coupling constants considered as Fig. 1 indicates. 

It is also of interest to examine how critical is the optimization of mixing 
parameter el for the performance of the CCSD-VB procedure or, equivalently, for 
obtaining of reasonably accurate t4 cluster components. We recall that when 
employing an average value for the mixing parameter when applying the PPP-VB 
procedure with spectroscopic parameterization, we still obtain perfectly acceptable 
approximation. We thus consider the cyclobutadiene model with fl = - 2 . 5  eV and 
vary the mixing parameter in the vicinity of its optimal value. For  the sake of 
comparison, we also calculate the corresponding PPP-VB energies using the same 
2-Kekul6 structure wave function that we employed to obtain the CCSD correc- 
tion terms. The ratio of the resulting CCSD-VB and PPP-VB energies with respect 
to the exact result is shown in Fig. 2, while the ratio of the corresponding t4 
amplitudes is listed in Table 2. We see immediately from Fig. 2 that the VB energy 
is much more sensitive to the change in the mixing parameter than is the CCD-VB 
energy, the former showing a parabolic dependence with the maximum corres- 
ponding to the optimal ~1 value while the latter one depends nearly linearly on el. 
This would seem to indicate that a very accurate optimization of the mixing 
parameter is not essential, even though the t4 amplitudes change by a factor of 2 to 
3 as Table 2 indicates. We also note that the optimal ~1 value that results from the 
VB energy minimization is not giving the "best" CCD-VB energy. However, the 
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Fig. 2. The effect of the mixing 
parameter el, Eq. (9), defining the 
OEAO {bl} basis used in the 
2 Kekul~ structure PPP-VB model 
of cyclobutadiene, on the PPP-VB 
and CCSD-VB energies. The 
spectroscopic parameterization 
(fl =-2.5 eV) is employed yielding 
the FCI correlation energy 
- 6.7745 eV. The vertical line 
indicates the optimal value of el 
corresponding to f l=-2 .5  eV 

Table 2. Dependence of the t 4 amplitude of 
cyclobutadiene, obtained from the PPP- 
VB(2K, le) wave function for fl= -2.5 eV, as 
a function of the mixing parameter ~1, Eq. (9), 
defining the OEAO {bl} basis employed. 
Relative values R of the ratio of the PPP-VB 
and FCI amplitudes, R - t  4 -  PPP-VB/t4,FO are 
given. The el independent FCI amplitude 
equals in this case t F°=  -0.070688. The opti- 
mal value of e 1 corresponding to fl= -2.5 eV 
is e 1 =0.255313 

el R 

0.20 1.7323 
0.21 1.5734 
0.22 1.4263 
0.23 1.2902 
0.24 1.1643 
0.25 1.0479 
0.255313 0.9898 
0.26 0.9405 
0.27 0.8415 
0.28 0.7503 
0.29 0.6664 

el p a r a m e t e r  va lue ,  w h i c h  yields the  exac t  F C I  e n e r g y  w i t h  the  C C D - V B  p r o c e d -  
ure, lies in the  c lose  v ic in i ty  o f  the  o p t i m a l  VB p a r a m e t e r .  

3.1.2 Benzene. W e  nex t  c o n s i d e r  a p r o t o t y p i c a l  a r o m a t i c  sys tem r e p r e s e n t e d  by 
the  P P P  m o d e l  o f  benzene .  W e  aga in  a s s u m e  the  C - C  b o n d  l eng th  to  be  1.4 A, w i th  
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Fig. 3. Dependence of the exact 
FCI maximal t2, t 3 and t4 cluster 
amplitudes of the re-electron 
benzene model on the resonance 
integral fl (in eV) 

carbons located at the vertices of a regular hexagon and assume the tight binding 
approximation for the one-electron part. Although in this case both Ts and T4 
clusters contribute, we still have that T1 -- 0. Thus, again CCD = CCSD and only Ts 
and T4 corrections need be considered. 

Before exploring the CCD-VB approach, let us examine the cluster structure 
and energetics of the exact FCI or FVB solution. Since in this case we have to deal 
with a number of cluster amplitudes of T2, T3 and 7"4 types, we cannot examine 
them individually. In order to get a general idea of their relative importance, we 
have plotted in Fig. 3 the maximum absolute value of a cluster amplitude from each 
class as a function of the resonance integral ~. A similar dependence is obtained 
when we examine the sum of the squares of cluster amplitudes of each kind. Later, 
we also present another insight into the cluster structure using a nomogrammatic 
representation. 

We can see clearly from Fig. 3 that for I fll > ifltsp=ct)[, where the spectroscopic or 
physical value of fl is in the neighborhood of -2.4 eV, both 3- and 4-body 
connected clusters are very small while their significance dramatically increases 
when approaching the fully correlated limit. We shall also see that ts amplitudes, 
although much smaller than t4-amplitudes, play an important role in the region of 
high coupling constants. Moreover, their effect on the correlation energy is far from 
being additive. To demonstrate this fact, as well as to get some idea concerning the 
role of 3- and 4-body clusters, we have carried out the CCD-VB calculations using 
the FCI amplitudes and applied the T3 and T4 corrections separately as well as 
jointly. Of course, in this case, the CCD-VB method considering all three correc- 
tions must yield the FCI energy. These results are shown in Fig. 4. We find that for 
[fll > 2  eV, the contribution from 3- and 4-body clusters is very small, so that the 
VB corrected CCD energies are practically identical with the standard CCD ones, 
both providing an excellent approximation to the exact FCI results. As we 
approach the fully correlated limit (i.e. for I~1< 2 eV), however, the standard CCD 
energy begins to significantly overestimate the exact correlation energy. Applying 
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Fig. 4. Comparison of correlation 
energies (in eV) of the benzene 
x-electron model, obtained with 
the FCI and different CCD 
methods, as a function of the 
resonance integral fl (in eV). Note 
that in this case, CCD ~- CCSD. In 
addition to the standard CCD 
model, both T3 and T4 corrected 
CCD-VB models, employing, 
respectively, exact 3- and 4-body 
connected cluster amplitudes, are 
shown. Note that in this case the T3 
and 7"4 corrected CCD-VB is 
equivalent to FCI 

Ts corrections, only a small change is observed, while T4 corrections reduce the 
CCD error to about one half for 1fll<0.5eV and almost completely for 
1 eV < [ill < 2 eV. We thus see that in the highly correlated regime, the effect of the 
T3 and T4 correcting terms is highly nonadditive, each providing much smaller 
correction individually than when both are applied simultaneously. It is also 
interesting that both corrections shift the CCD energy "in the right direction", i.e. 
improve the standard CCD result. This should be compared with ab initio model 
calculation on the H4 models [25], where the T3 and 7"4 contributions shift the 
correlation energy in opposite directions (see, however, Part III). 

Let us now investigate the performance of the CCD-VB method using approx- 
imate VB wave functions. We consider VB wave functions involving only two 
Kekul6 structures, with one or two parameter OEAOs, as well as the one with all 
five covalent structures (Kekul6 and Dewar) and one-parameter OEAO basis. The 
cluster analysis of these wave functions indicates that they provide a reasonable 
estimate of the connected 3- and 4-body clusters. This is illustrated in Figs. 5a and 5b, 
which compare the maximal t3 and t4 clusters obtained from various VB wave 
furictions and in Figs. 6a-d and 7a-d, where the distribution of magnitudes of the t3 
and t4 clusters for five different values of the resonance integral is represented by 
nomograms. These nomograms also clearly indicate how the importance of the 3- 
and 4-body clusters increases when approaching the fully correlated limit. The 
wave function containing both Kekul6 and Dewar structures seems to provide the 
closest approximation to the FCI picture, although the results based only on 
Kekul6 structures, particularly for the more important 7"4 clusters, provide a rather 
good description as well. 

The performance of the CCD-VB method, employing the above mentioned 
approximate VB wave functions, is shown in Figs. 8 and 9. We see from Fig. 8a that 
all three approximate VB wave functions successfully correct the shortcomings of 
the standard CCD method in the highly correlated regime. The details for this 
region are shown in Fig. 8b, where we also included several points obtained with 
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model 

the VB wave function involving 5 covalent structures and two-parameter {bl, 3} 
OEAO basis. We see that in all cases the corrected CCD-VB correlation energies 
approach the exact value as fi~0, as might be expected. It is, however, surprising 
that simple two-Kekul6 structure wave functions yield slightly better energies than 
those involving all 5 covalent structures (clearly, the opposite is the case for the 
VB energies, that are variational). We also see that the introduction of the 
second mixing parameter in the OEAO basis has very little effect and leads 
to only a marginal improvement. Finally, in the neighborhood of physical 
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p a r a m e t e r i z a t i o n  ( / ~ = - 2 . 4  eV) and  in the weakly  cor re la ted  limit,  the s t a n d a r d  
C C D  provides  an  a lmos t  exact  result  and  the Ta and  T4 cor rec t ions  have a negli- 
gible effect. 

F igu re  9 examines  the role of  the Ta and  7"4 cor rec t ions  individual ly ,  relat ive to 
the F C I  results.  Again,  we see tha t  we ob ta in  a very s imi lar  p ic ture  when ei ther  the 
2 Kekul6  o r  the 5 cova len t  s t ructure  VB wave funct ion is employed .  Ini t ia l ly ,  for 
1 e V <  ]/?[ < 3 eV, the T3 and  T4 cor rec t ions  devia te  f rom the co r r e spond ing  F C I  
cor rec t ions  in oppos i t e  direct ions.  However ,  for [ / / [<1 eV, bo th  differences 
E ( C C D - V B ) - E ( F C I )  become negative.  Yet, when bo th  cons idered  s imul taneously ,  
a posi t ive  dev ia t ion  results  tha t  tends to zero as [//[--*0. 
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Here we must also emphasize that much care must be exercised when solving 
the CCD or CCD-VB equations in the highly correlated region. The standard 
CCD solution can only be continued beyond/3 ~ -  1 eV using "analytic continua- 
tion" procedure, i.e. by employing the t2 amplitudes for a nearby geometry as 
a starting approximation, or some other meaningful estimate of t2 amplitudes. 
Similar difficulties occur for very small I/3l values when individual (i.e., Ta or T4) 
corrections are applied. The fully corrected CCD-VB equations converge best, 
although again in the highly correlated regime, a proper choice of the initial 
approximation is crucial for the Newton-Raphson iterative procedure to converge. 

Thus, to conclude, we see that already a simple (2K, le) VB wave function provides 
a reasonable estimate of the 3- and 4-body clusters and the corresponding CCD-VB 
method is capable of correcting major inadequacies of the standard CCD approach. 
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various VB corrected CCD 
methods, b highlights the highly 
correlated region 

3.1.3 C l o H l o  . We briefly next consider the N = 10 cyclic polyene, using the same 
parametrization as in the benzene case, and the (2K, le) VB wave function. The 
main results are summarized in Fig. 10, where the PPP-VB energy is also shown. 
We recall that in this case, the CCD method gives extremely poor results for 
Jill < 1 eV (the error for fi = 0 is about 1000%) [5], not to mention the difficulty of 
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reaching the convergence in this region. We thus restrict ourselves to the region of 
I/~] > 1 eV. We see that again, for ]/~] > 3 eV, the T3 and/ '4  corrections are small and 
the standard CCD method performs well. It must be noted, however, that the 
2-Kekul6 structure VB description deteriorates in this region as the corresponding 
energy indicates. Nonetheless, since the T3 and 7"4 corrections are very small in this 
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Fig. 10. Dependence of the 
correlation energy (in eV) of the 
CloHxo cyclic polyene as 
a function of the resonance integral 
obtained with the FCI, PPP-VB, 
CCD and various VB corrected 
CCD methods. T3, T4 and F labels 
imply the 3-body, 4-body and both 
3- and 4-body corrections were 
applied 

region, this has no adverse effect on the performance of the CCD-VB method that 
yields practically the same result in this region as the standard CCD. 

For small 1/~[ values, we find behavior similar to the benzene case. The T3 
corrections by themselves have little effect, while the opposite is the case for the T4 
corrections. Nonetheless, to obtain a good approximation, it is essential to consider 
both corrections simultaneously (referred to as the full correction). We must also 
emphasize (see Fig. 10) the "complementarity" of VB and MO based descriptions, 
the former being well suited to the highly correlated limit and the latter one to the 
uncorrelated limit. Consequently, the CCD-VB approach provides a "bridge" 
between these two formalisms that performs rather well in the whole range of the 
coupling constant. 

3.2 Linear polyenes 

In both models examined here we assume all-trans conformation and idealized 
geometry with the C-C bond length of 1.4 A and CCC angle of 120 °. We again 
employ the tight binding approximation for the one-electron part and we note that 
for these models neither T3, nor T4, nor Tx vanishes. We also invariably employ 
only one mixing parameter el in the OEAO bases in PPP-VB calculations. For the 
sake of reference, we list the exact FCI correlation energies for both systems in 
Table 3. 

3.2.1 Trans-butadiene. Exploiting the simplicity of this 4-electron model problem, 
we compare in detail the cluster structure of various approximate VB and FCI 
wave functions, since there is only one nonequivalent t3 amplitude and one t4 
amplitude. However, the approximate VB wave functions violate the alternancy 
symmetry (since we use OEAOs), so that we have two nonequivalent t3 (and, 
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Table 3. FCI correlation energies (in eV) for the PPP n-electron 
models of trans-butadiene (TB) and all-trans-hexatriene (ATH) as 
a function of the resonance integral 3 (in eV) 

--fl (eV) E~or,(rm (eV) E eorr(ATH) (eV) 

0.0 -6.77056 -8.34359 
0.1 --5.17229 -7.75625 
0.2 -4.80522 -7.20069 
0.3 --~.46394 --6.68253 
0.4 --4.14931 -6.20393 
0.5 -3.86099 -5.76491 
0.6 --3.59794 -5.36420 
0.7 -3.35862 -4.99967 
0.8 --3.14131 --4.66878 
0.9 -2.94413 -4.36876 
1.0 --2.76525 --4.09681 
1.5 --2.08697 --3.06913 
2.0 -1.65220 -2.41528 
2.4 -1.40899 --2.05214 
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similarly, t~) cluster amplitudes. These various amplitudes, resulting f rom the 
(1K, le) and (2c, le) VB wave functions are compared  with the corresponding F C I  
amplitudes in Fig. 11. Fo r  the tl and t3 amplitudes, we see that  the best approxima-  
t ion is obtained in the fully correlated limit, where each covalent  structure repres- 
ents an exact solution. However,  when considering a single Kekul~ structure wave 
function, the t4 ampli tude is very poor ly  described. In  fact, in the fl = 0 limit, this 
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Fig. l l a -e .  Dependence of tl (a), 
t 3 (b) and t4 (e) cluster amplitudes 
for the trans-butadiene n-electron 
model, resulting from the FCI and 
two approximate VB wave 
functions (involving one Kekul6 
and five covalent structures, 
respectively), on the resonance 
integral fl (in eV). Note that due to 
the alternancy symmetry breaking 
in the PPP-VB models, two 
distinct tx and t 3 amplitudes result 
(see the text for details) 

t4 ampl i tude  exactly vanishes. Thus,  only the T2 cluster c o m p o n e n t  is present  in the 
Kekul6 s t ructure  wave  function cons t ruc ted  f rom the o r t h o n o r m a l  P P P  AOs. On  
the o ther  hand,  the t4 ampl i tude  originat ing f rom the non-Kekul6  covalent  struc- 
ture (with bonds  between central  and  terminal  carbons)  equals - 6 .  The  p roper  
zero order  eigenstate tha t  cor responds  to the g round  state fl = 0 limit is a linear 
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combination of Kekul6 and non-Kekul6 structures with coefficients - x / ~  and 
(x/~-1)/x//-6, respectively (note that the overlap between these structures is S=½ 
since in the fl= 0 limit we have el = 0). This wave function then yields the exact t4 
amplitude in the fully correlated limit as Fig. 11c indicates. 

Turning now to the energetic considerations, we compare the correlation 
energies relative to the FCI result for PPP-VB and CCSD-VB methods, obtained 
with VB wave functions involving one Kekul6 and 2 covalent structures (using only 
one mixing parameter), as well as for the standard CCSD method (see Fig. 12). We 
see again that the VB (1K, le) and VB (2c, le) energies give the exact result in the 
fl--0 limit aFnd steadily deteriorate with increasing [fl [. On the other hand, CCSD 
approaches provide a very good approximation in the weakly correlated region 
and not so good results for highly correlated regime (e.g., 0<[f l [<2eV).  In 
particular, the standard CCSD energies deviate most strongly from the exact result 
even though in this case all methods recover the exact correlation energy in the 
f l=0  limit. We see from Fig. 12 that the error arising in the standard CCSD 
approach is greatly diminished when these equations are corrected for the Ta, 1"4 
and TIT3 clusters. 

The fully correlated limit (fl = 0) deserves a special attention in this case. As we 
have already indicated above, we have that T1 = T3 = 7"4 = 0 for the Kekul6 struc- 
ture wave function 14~K)in the fl = 0 limit (i.e., constructed from the orthonormal 
PPP AOs), while T4 ~ 0 for the non-Kekul~ structure [ ~D) (we shall refer to it as 
a Dewar structure by analogy to benzene). Both Kekul6 and Dewar structures 
represent an exact eigenstate of the PPP Hamiltonian when fl = 0 [26]. We also 
know that a proper zero order wave function [4~o) corresponding to the ground 
state is given by the linear combination [~o)=CK[q)~)+CoI~D) with 
C I ( = - x / ~  and CD=(x/~--1)/X/6. It is now interesting to consider the CCSD 
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equat ions together with the CCSD-VB corrected equat ions using the cluster 
componen ts  characterizing I ~ ) ,  ] ~D)  and [ 4 o ) .  In fact, in the case of  I ~K),  there 
is no difference between the two sets since T1 = T3 = 7"4 = 0. Using now the t2 cluster 
ampli tudes associated with these various VB wave functions as the initial guess, we 
find that  while the C C S D  solution changes in the first iteration, the C C S D  energy 
does not. However,  in the case of  the J~D) and I ~ 0 )  corrected CCSD-VB 
equations, these tz cluster ampli tudes represent also the solutions of  the corres- 
pondingly  corrected C C S D  equations. Of  course, the same correlat ion energy 
results in each case. We thus see that  similarly to the CI  case, the degeneracy 
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characterizing the f l=0  limit manifests itself in the structure of the solution 
manifold of the CCSD problem as well (cf., also [27]). 

3.2.2 All-trans-hexatriene. A comparison of the cluster structure resulting from 
the FCI and PPP-VB calculations with one Kekul6 or all 5 covalent structures is 
displayed nomogramatically in Figs. 13-15. We see that both approximate VB 
wave functions yield rather similar distributions for the T3 amplitudes, particularly 
for small ]fl[ values, while the 7"4 amplitudes are better represented by the VB wave 
function involving all 5 covalent structures. This may be expected when we realize 
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that it is exactly the highly correlated limit where the covalent structures play the 
most important role. 

Calculating the correlation energies (cf. Fig. 16) we observe a very similar 
behavior as in the case of butadiene, except that with the CCSD methods we 
encounter convergency problems for small Jill values and that the deviations from 
the exact FCI results are much larger. We also see quite distinctly the essential role 
of other than Kekul6-type covalent structures. Only in this case were we able to 
obtain converged CCSD-VB solutions in the whole range of lilt values, even 
though the "analytical continuation" procedure from both weakly and fully corre- 
lated limits had to be employed, relying on very good estimates of cluster ampli- 
tudes used as the starting approximation. 
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4 Conclusions 

The results presented in this paper clearly demonstrate the potential of using the 
information about the connected 3- and 4-body clusters, issuing from approximate 
VB-type wave functions, to correct the standard CCSD equations and thus to 
extend their utility even in situations where the standard formalism can no longer 
be employed. We should emphasize in this connection the complementarity of the 
MO  and VB descriptions, particularly when we are interested in a continuous 
transition between different correlation regimes or in potential energy surfaces 
involving a dissociation or a bond formation. In this respect the studied models 
offer an excellent opportunity for testing of these ideas in spite of their obvious 
limitations. Moreover, these studies offer another insight into the cluster structure 
of various wave' functions and into the role of higher than pair clusters in the CC 
formalism, particularly when the assumption of the ground state nondegeneracy is 
being violated. 

In the next paper (Part III) of this series, we shall in fact explore some simple 
models of bond breaking or formation, relying again on the P P P  model Hamil- 
tonians. In view of these results it would be certainly desirable to explore this idea 
at the ab initio level, using either the GVB or spin-coupled VB wave functions. In 
view of the approximate nature of this approach, it would also be worthwhile to 
explore the possibility of truncating the 3- and 4-body sets of connected cluster 
amplitudes and their efficient computation. We hope to address these problems in 
the future. 

Acknowledgements. J. Planelles expresses his gratitude to one of his co-authors, Professor J. 
Paldus, for his hospitality and helpful discussion during his stay in the Department of Applied 
Mathematics, University of Waterloo. One of us (J. Planelles) wishes to acknowledge the financial 
support by the Direcci6n General de Investigacion Cientifica y T6nica of Spain that enabled him 



Application to PPP model systems II 57 

to visit the Department of Applied Mathematics of the University of Waterloo for the academic 
year 1992-93. The continued support by NSERC (J. Paldus) is also gratefully acknowledged. 

References 

l. Ci~ek J (1966) J Chem Phys 45:4256; idem (1969) Adv Chem Phys 14:35; Ci~ek J, Paldus J (1971) Int 
J Quantum Chem 5:359; Paldus J, Ci~ek J ,  Shavitt I (1972) Phys Rev A5:50 

2. For recent reviews, see (a) Bartlett RJ (1989) J Phys Chem 93:1697; (b) Paldus J (1992) In: Wilson S, 
Diercksen GHF (eds) Methods in computational molecular physics, NATO ASI Series, Series B, 
Vol. 293. Plenum, New York, p 99; (c) idem (1994) In: Malli GL (ed) Relativistic and correlation 
effects in molecules and solids, NATO ASI Series B, Vol. 318. Plenum, New York, p 207 and 
references therein 

3. Zhi He, Cremer D (1991) Int J Quantum Chem Symp 25:43; idem (1993) Theor Chim Acta 85:305 
4. Jankowski K, Paldus J (1980) Int J Quantum Chem 18:1243; Adams BG, Jankowski K, Paldus 

J (1981) Phys Rev A 24:2316; idem (1981) ibid 24:2380 
5. Paldus J, Takahashi M, Cho RWH (1984) Phys Rev B 30:4267; Paldus J, Boyle MJ (1982) Int 

J Quantum Chem 22:1281 
6. Piecuch P, Zarrabian S, Paldus J, Ci~ek J (1990) Phys Rev B 42:3351 
7. Paldus J, Planelles J (1994) Theor Chim Acta (referred to as Part I) 
8. Parr RG (1963) The quantum theory of molecular electronic structure. Benjamin, New York 
9. Paldus J (1976) In: Eyring H, Henderson D (eds) Theoretical chemistry: advances and perspectives, 

Vol 2. Academic, New York, p 131 
10. Paldus J (1974) J Chem Phys 61:5321 
11. Li X, Paldus J (1991) J Mol Struct (Theochem) 229:249 
12. Li X, Paldus J (1992) Int J Quantum Chem 41:117 
13. Mulliken RS (1949) J Chim Phys 46:497; for English translation see: idem (1975) In: Ramsay DA, 

Hinze J (eds) Selected papers of Robert S. Mulliken. University of Chicago Press, Chicago, p 899; 
idem (1962) J Phys Chem 56: 295; see also the Appendix of the paper by Kouteck) J, Paldus J (1962) 
Coll Czech Chem Commun 27:599 

14. Paldus J, Chin E (1983) Int J Quantum Chem 24: 373; Takahashi M, Paldus J (1985) ibid 28:459 and 
references therein 

15. Planelles J, Paldus J, Li X (1994) Theor Chim Acta (Part III) 
16. Mataga N, Nishimoto K (1957) Z Phys Chem 13:140 
17. Gerratt J, Raimondi M (1980) Proc Roy Soc (London) A 371:525 
18. McWeeny R (1988) Int J Quantum Chem 34:25 
19. Paldus J, Li X (1991) Israel J Chem 31:351 
20 Paldus J, Li X (1992) In: Frank A, Seligman TH, Wolf KB (eds) Group theory in physics, AIP 

conference proceedings 266. American Institute of Physics, New York, p 159 
21. (a) Paldus J, Sarma CR (1985) J Chem Phys 83:5135; (b) Paldus J, Gao MJ, Chen JQ (1987) Phys 

Rev A 35:3197; (c) Paldus J, Jeziorski B (1988) Theor Chim Acta 73:81; (d) Paldus J, Rettrup S, 
Sarma CR (1989) J Mol Struct (Theochem) 199:85 

22. Paldus J (1988) In: Truhlar DG (ed) Mathematical frontiers in computational chemical physics, 
IMA Series, Vol. 15. Springer, Berlin, p 262 

23. Li X, Zhang Q (1989) Int J Quantum Chem 36:599; Zhang Q, Li X (1989) J Mol Struct (Theochem) 
198:413 

24. Waller I, Hartree RD (1929) Proc Roy Soc (London) A 124:119 
25. Kucharski SA, Balkovfi A, Bartlett RJ (1991) Theor Chim Acta 80:321 
26. t~iffek J, Paldus J, Huba6 1 (1974) Int J Quantum Chem 8:951 
27. Piecuch P, Paldus J (1991) Int J Quantum Chem Symp 25:9 


